Performance Analysis of the FastICA Algorithm and Cramér–Rao Bounds for Linear Independent Component Analysis
نویسنده
چکیده
The FastICA or fixed-point algorithm is one of the most successful algorithms for linear independent component analysis (ICA) in terms of accuracy and computational complexity. Two versions of the algorithm are available in literature and software: a one-unit (deflation) algorithm and a symmetric algorithm. The main result of this paper are analytic closed-form expressions that characterize the separating ability of both versions of the algorithm in a local sense, assuming a “good” initialization of the algorithms and long data records. Based on the analysis, it is possible to combine the advantages of the symmetric and one-unit version algorithms and predict their performance. To validate the analysis, a simple check of saddle points of the cost function is proposed that allows to find a global minimum of the cost function in almost 100% simulation runs. Second, the Cramér–Rao lower bound for linear ICA is derived as an algorithm independent limit of the achievable separation quality. The FastICA algorithm is shown to approach this limit in certain scenarios. Extensive computer simulations supporting the theoretical findings are included.
منابع مشابه
Corrections to "Performance Analysis of the FastICA Algorithm and CramÉr-Rao Bounds for Linear Independent Component Analysis"
The FastICA or fixed point algorithm is one of the most successful algorithms for linear independent component analysis (ICA) in terms of accuracy and computational complexity. Two versions of the algorithm are available in literature and software: a one-unit (deflation) algorithm and a symmetric algorithm. The main result of this paper are analytic closed form expressions that characterize the...
متن کاملCramér-Rao Bounds for Estimation of Linear System Noise Covariances
The performance of Kalman filter depends directly on the noise covariances, which are usually not known and need to be estimated. Several estimation algorithms have been published in past decades, but the measure of estimation quality is missing. The Cramér-Rao bounds represent limitation of quality of parameter estimation that can be obtained from given data. In this article, The Cramér-Rao bo...
متن کاملFast and Accurate Methods for Independent Component Analysis
The thesis deals with several problems in blind separation of linear mixture of unknown sources using independent component analysis. Among other things, it focuses on a key question: how accurate the separation can be done, and how to achieve the best possible separation in practice. First, the problem with indeterminacy of order and signs of original sources is addressed. The indeterminacies ...
متن کاملMinimax Mutual Information Approach for ICA of Complex-Valued Linear Mixtures
Recently, the authors developed the Minimax Mutual Information algorithm for linear ICA of real-valued mixtures, which is based on a density estimate stemming from Jaynes’ maximum entropy principle. Since the entropy estimates result in an approximate upper bound for the actual mutual information of the separated outputs, minimizing this upper bound results in a robust performance and good gene...
متن کاملCalculation of Leakage in Water Supply Network Based on Blind Source Separation Theory
The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010